skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matsuda, Masaaki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional (2D) kagome lattice metals are interesting because their corner sharing triangle structure enables a wide array of electronic and magnetic phenomena. Recently, post-growth annealing is shown to both suppress charge density wave (CDW) order and establish long-range CDW with the ability to cycle between states repeatedly in the kagome antiferromagnet FeGe. Here we perform transport, neutron scattering, scanning transmission electron microscopy (STEM), and muon spin rotation (μSR) experiments to unveil the microscopic mechanism of the annealing process and its impact on magneto-transport, CDW, and magnetism in FeGe. Annealing at 560 °C creates uniformly distributed Ge vacancies, preventing the formation of Ge-Ge dimers and thus CDW, while 320 °C annealing concentrates vacancies into stoichiometric FeGe regions with long-range CDW. The presence of CDW order greatly affects the anomalous Hall effect, incommensurate magnetic order, and spin-lattice coupling in FeGe, placing FeGe as the only kagome lattice material with tunable CDW and magnetic order. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  2. Abstract Ferro‐rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo‐FR crystals (i.e., single FR domain). This study explores a cost‐effective approach to growing homo‐FR helimagnetic RbFe(SO4)2(RFSO) crystals by lowering the crystal growth temperature below theTFRthreshold using the high‐pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo‐FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally highTFRof ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates. 
    more » « less
  3. The study of high-entropy materials has attracted enormous interest since they could show new functional properties that are not observed in their related parent phases. Here, we report single crystal growth, structure, thermal transport, and magnetic property studies on a novel high-entropy oxide with the spinel structure (MgMnFeCoNi)Al2O4. We have successfully grown high-quality single crystals of this high-entropy oxide using the optical floating zone growth technique for the first time. The sample was confirmed to be a phase pure high-entropy oxide using x-ray diffraction and energy-dispersive spectroscopy. Through magnetization measurements, we found (MgMnFeCoNi)Al2O4 exhibits a cluster spin glass state, though the parent phases show either antiferromagnetic ordering or spin glass states. Furthermore, we also found that (MgMnFeCoNi)Al2O4 has much greater thermal expansion than its CoAl2O4 parent compound using high resolution neutron Larmor diffraction. We further investigated the structure of this high-entropy material via Raman spectroscopy and extended x-ray absorption fine structure spectroscopy (EXAFS) measurements. From Raman spectroscopy measurements, we observed (MgMnFeCoNi)Al2O4 to display a combination of the active Raman modes in its parent compounds with the modes shifted and significantly broadened. This result, together with the varying bond lengths probed by EXAFS, reveals severe local lattice distortions in this high-entropy phase. Additionally, we found a substantial decrease in thermal conductivity and suppression of the low temperature thermal conductivity peak in (MgMnFeCoNi)Al2O4, consistent with the increased lattice defects and strain. These findings advance the understanding of the dependence of thermal expansion and transport on the lattice distortions in high-entropy materials. 
    more » « less
  4. null (Ed.)